
Preprint
UCRL- JC- 143204

U.S. Department of Energy

Laboratory

a ,

Combining a Multithreaded
Scene Graph System with
a Tiled Display
Environment

W. Bethel, R. Frank

This article was submitted to
The Institute of Electrical and Electronics Engineers Visualization
2001, San Diego, CA., October 21-26, 2001

March 29,2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http: / /www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

US. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@adonis.osti.eov

Available for the sale to the public from
U.S. Department of Commerce

National Technical lnformation Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http: / /www.ntis.eov/orderina.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

mailto:orders@ntis.fedworld.gov
http://www.llnl.gov

Combining a Multithreaded Scene Graph
System with a Tiled Display Environment

Wes Bethel
R3vis Corporation

1.0 Abstract
This case study highlights the technical challenges
of creating an application that uses a multithreaded
scene graph toolkit for rendering and uses a soft-
ware environment for management of tiled display
systems. Scene graph toolkits simplify and stream-
line graphics applications by providing data man-
agement and rendering services. Software for tiled
display environments typically performs device and
event management by opening windows on dis-
plays, by gathering and processing input device
events, and by orchestrating the execution of appli-
cation rendering code. These environments serve
double-duty as frameworks for creating parallel
rendering applications. We explore technical
issues related to interfacing scene graph systems
with software that manages tiled projection sys-
tems in the context of an implementation, and for-
mulate suggestions for the future growth of such
systems.

2.0 Background
A filed display surface is a single logical display
composed of one more physical display devices.
We use the term tiled display to refer to surround-
style systems, like the CAVE [Cruz-Niera93], and
high-resolution projector arrays, such as the Pow-
erwall [UMinn94]. In this discussion, we use the
term host environment to refer to the software
that performs tiled display device management.
This case study explores use of two such environ-
ments: CAVELib’ and VDL [SchikoreOO].

CAVELib and VDL share a similar design that
make it easy to write reasonbly portable applica-

~ ~~ -

1. CAVELib is a commercial software package distrib-
uted by VRCO, http:/lwww.vrco.com/.

Randall Frank
Lawrence Livermore National Laboratory

tions that use multiple displays. Both use a configu-
ration file that defines a mapping from logical
displays to physical display devices. Both environ-
ments perform the mundane tasks of opening suit-
able drawables on the displays, and initializing
OpenGL. When a frame needs to be rendered, the
host environment computes the view transforma-
tion that corresponds to a given display, and
invokes the application “draw function” to perform
rendering. The host environment typically invokes
all application draw functions in parallel in order to
achieve the maximum possible frame rate.

A scene graph system refers to a set of data
structures and associated operations that imple-
ment data management and rendering in graphics
applications. Scene graph systems vary in fea-
tures, types of primitives supported and in deploy-
ment environment. Some provide event, window
and rendering context management as an intrinsic
(and sometimes inseparable) part of the system,
while others rely on the application for these ser-
vices.

There have been similar efforts in the past to use
scene graph toolkits for rendering management in
multiple display environments. [Pape96] describes
combining Performer [Rohlf94] and CAVELib.
These applications can be best described as Per-
former applications that use CAVELib to gather
input device events. These applications do not use
CAVELib to compute the view transformation, nor
use CAVELib to invoke application rendering code.
All view transformations are computed within the
Performer scene graph hierarchy. More recently,
[ChristiansonOO] compares use of Java3D and
Vega as the underlying scene graph technologies
with deployment in a multiple display environment.
Frame rates for Java3D were reported to be an
order of magnitude slower than the native mode
Vega. That study does not use an external host
environment, such as VDL or CAVELib, but instead
employs the inherent multiple-display capabilities

1 Combining a Multithreaded Scene Graph System with a Tiled Display Environment

http:/lwww.vrco.com

of the scene graph system to perform tiled display
management.

Our goal is to use both software systems to their
fullest potential. The host environment will manage
displays, gather input device events, and compute
the view transformation for each display. The
scene graph system will serve as a repository for
graphics data and will perform rendering when
invoked by the host environment. For this experi-
ment, we used OpenRM Scene Graph, an Open
Source, native mode, thread-safe, and multistage-
parallel scene graph system ([BethelOl],
[OpenRM]).

3.0 Implementation Details
In the discussion that follows, we focus on the
interface between OpenRM and the host environ-
ment. The interfaces consist of resources that are

shared between the two technologies. During our
development, we encounter obstacles due to
assumptions made by both systems concerning
resource usage. We present an example that
makes extensive use of features from both sys-
tems.

3.1 OpenRM and Host
Environments

To begin our development, we first identified the
“interfaces” bewteen the host environment and
OpenRM. We use the term interface in the sense
of resources that are shared between the host
environment and OpenRM, as opposed to API-
style interfaces. These include the OpenGL render-
ing context, the drawable, the OpenGL transforma-
tion stack, and any special post-rendering
activities, such as swapping buffers. These inter-
faces are summarized in the following table.

TABLE 1. Interfaces between Host Environment and OpenRM

Resource How Used
OpenGL context
Drawable

Transformation Stack

Created and “made current” by the host environment.
The OpenGL-capable drawable is created by the host environment, and
mapped onto the display device.

The host environment computes the view transformation that reflects the
correct view transformation for a single viewer looking ”through” a “win-
dow” on each display device.

Buffer swapping for double-buffered rendering contexts. The host envi-
ronment may try to coalesce all buffer swaps into a single point in order
to have all display devices update simultaneously.

Post-render actions

3.2 OpenGL Rendering Contexts

When the application initializes the host environ-
ment, the host environment typically initializes
each of the individual display devices. For each
display device, the host environment locates a suit-
able OpenGL context then opens a drawable on
the display device. According to the rules of
OpenGL, an OpenGL rendering context can be
active only in one thread at a time. This means that
one OpenGL context can be used by multiple
threads, but only in round-robin fashion. In order to
achieve maximum frame rates, most host environ-
ments open one OpenGL rendering context per
display, and invoke application draw callbacks in
parallel.

When the host environment computes the view
transformation for each display prior to invoking the
application callback, the host environment writes
this transformation into the OpenGL matrix stack.
In order to write into the OpenGL matrix stack, the
host environment must “own” the OpenGL context.
The application rendering callback then draws into
the display using the view transformation loaded
on the matrix stack. The implication of this design
is that the application callback must exist in the
same execution thread as the host environment
process that computes the view transformation.

3.3 Matrix Stack Management

The RMpipe object in OpenRM has a two-state
attribute that controls how the OpenGL matrix

2 Combining a Multithreaded Scene Graph System with a Tiled Display Environment

stack is initialized during rendering. In one state,
OpenRM will intialize the matrix stack by loading
the identity matrix prior to rendering. In the other
state, the matrix stack is not initialized: it is
assumed the caller has pre-loaded values on the
matrix stack, and any transformations contained in
the scene graph are concatenated onto the matrix
stack. The developer must request the latter mode
in order to use OpenRM with a host environment
that preloads the view transformation on the matrix
stack.

3.4 Who Owns the OpenGL
Con text?

Sharing an OpenGL context amongst multiple exe-
cution threads can be a tricky proposition. Each
execution thread must explicitly “make the context
current” before use, and must explicitly yield the
context when finished. The host environment is a
parallel application, and OpenRM is also multi-
threaded. In order to have both software systems
harmoniously coexist, we need rules concerning
ownership of the OpenGL context.

OpenRM supports several modes of multistage,
multithreaded rendering. In one such mode, one
execution thread performs view dependent pro-
cessing, such as frustum culling and level-of-detail
model switching. The other thread performs render
operations, dispatching primitives not culled by the
view stage to the graphics pipeline. Since the host
environments do not yield the OpenGL context
prior to invoking the render callback, having the
rendering work performed by a separate thread
resulted in problems. However, we would like to
benefit from multistage processing during render-
ing, and would like to use the host environment
framework for display management.

In order to solve this problem, we added a new pro-
cessing mode to the RMpipe object. This new
mode places the view dependent processing in a
separate execution thread, while the render pro-
cessing remains in the same thread as the host
environment. This is possible because OpenRM’s
view dependent processing does not require
access to the OpenGL context: it only needs the
initial matrices from the OpenGL matrix stack,
which can be provided internally. The multistage
rendering model introduces a one-frame latency,
so that the view transformation specified by the
host environment at frame Nis not used for render-
ing until frame N+I.

3.5 Example: A Flyover and VDL

For this example, our goal was to combine a terrain
flyover demonstration program with VDL, and to
display the results on a tiled display surface. The
scene graph created by the demonstration pro-
gram contains a 3D camera: the position and orien-
tation of the camera changes over time. The
challenge was to combine VDL, which has its own
view model, with this scene graph, which also
includes a view model. It turns out that VDL‘s view
transformation consists of two components: a frus-
tum and a shear transformation. The shear trans-
formation aligns the frustum to a particular display
window. When we specify an Identify transforma-
tion for the frustum component, VDL preloads only
the shear transformation onto the matrix stack.
When the OpenRM rendering callback is invoked
for each display device, OpenRM’s view transfor-
mation is multiplied with the shear transformation
on the matrix stack, producing the correct view
transformation. The flyover example uses exten-
sive view-dependent operations to perform frustum
culling and distance-based level-of-detail model
switching [Clark76].

4.0 Conclusions and Future
Work
Host environments simplify resource management
in multiple display environments. They open win-
dows on the displays, compute the view transfor-
mation for each display device, and invoke
application callbacks to perform rendering. Scene
graph systems provide graphics data management
and rendering services. Combining these two tech-
nologies is a logical choice for developers, and
doing so requires careful attnetion to detail. Both
host environments we have studied store the view
transformation on the OpenGL matrix stack. Due to
the rules governing ownership of the OpenGL ren-
dering context, use of the matrix stack as a com-
munication mechanism precludes the use of a
draw process that runs in a separate execution
thread. In the future, host environments should
consider approaches that allow for more flexible
use of resources.

Our work was performed on SMP systems with
multiple graphics pipes. In the future, we will
explore deployment of host environments and
scene graph toolkits on clusters. Recent advances
in parallel graphics APls [HumphreysOO] facilitate

Combining a Multithreaded Scene Graph System with a Tiled Display Environment 3

use of distributed memory platforms for tiled dis-
play rendering.

5.0 Acknowledgement
The author wishes to thank

Lawrence Livermore National Laboratory for pro-
viding access to the VDL software and computing
facilities. This work was funded by the U.S. Depart-
ment of Energy through the Small Business Inno-
vation Research (SBIR) program under contract
number DE-FG03-00ER83083.

6.0 References
[Bethel01] W. Bethel, Hierarchical Parallelism in a
Scene Graph. Submitted to IEEE Symposium on
Parallel and Large-Data Visualization and Graph-
ics, March 2001.

[Christianson001 6. Christianson and A. Kimsey,
Comparison of Java3D in a Virtual Environment
Enclosure (2000) . Master's Thesis, Naval Post-
graduate School, Monetery, CA, March 2000.

[Clark761 J. Clark, Hierarchical Geometric Models
for Visible Surface Algorithms. Communications of
the ACM, 19, 10, pp 547-554. October 1976.

[Cruz-Niera93] C. Cruz-Niera, D. Sandin, T.
DeFanti, Surround-screen Projection-based Vir-
tual Reality: The Design and Implementation of the
CAVE. In Computer Graphics, Proceedings of SIG-
GRAPH 93, August 1993.

[HumphreysOO] G. Humphreys, 1. Buck, M. Eldridge
and P. Hanrahan, Distributed Rendering for Scal-
able Displays. In P roceedjngs of Supercomputing
'00, Dallas, Texas, November 2000.

[OpenRM] http://openrm.sourceforge.net/

[Pape96] D. Pape, pfCAVE CAVWPerformer
Library (CAVELib Version 2.6), http://
www.evl.uic.edu/pape/CAVE/prog/pfCAVE.man-
ual.html.

[Rohlf94] J. Rohlf and J. Helman, IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. In Computer Graphics
(Proc. ACM Siggraph 94), pp 381-394, August
1994.

[SchikoreOO] D. Schikore, R. Fischer, R. Frank, R.
Gaunt, J. Hobson, and 6. Whitlock, "High-resolu-
tion Multi-projector Display Walls and Applica-
tions", IEEE Computer Graphics and Applications,

[UMinn94] http://www.Icse.umn.edu/research/pow-
erwall/powerwall. html

VOI 20, 4138-44, JUVAUg, 2000.

4 Combining a Multithreaded Scene Graph System with a Tiled Display Environment

http://openrm.sourceforge.net
http://www.Icse.umn.edu/research/pow

